Molecular modeling optimization of anticoagulant pyridine derivatives.

Hernandez Prada JA, Madden SL, Ostrov DA, Hernandez MA., Molecular modeling optimization of anticoagulant pyridine derivatives.
J Mol Graph Model. 2008 Jun;26(8):1365-9, 2008-02-07

Abstract [-]: Intravascular clotting remains a major health problem in the United States, the most prominent being deep vein thrombosis, pulmonary embolism and thromboembolic stroke. Previous reports on the use of pyridine derivatives in cardiovascular drug development encourage us to pursue new types of compounds based on a pyridine scaffold. Eleven pyridine derivatives (oximes, semicarbazones, N-oxides) previously synthesized in our laboratories were tested as anticoagulants on pooled normal plasma using the prothrombin time (PT) protocol. The best anticoagulant within the oxime series was compound AF4, within the oxime N-oxide series was compound AF4-N-oxide, and within the semicarbazone series, compound MD1-30Y. We also used a molecular modeling approach to guide our efforts, and found that there was good correlation between coagulation data and computational energy scores. Molecular docking was performed to target the active site of thrombin with the DOCK v5.2 package. The results of molecular modeling indicate that improvement in anticoagulant activities can be expected by functionalization at the three-position of the pyridine ring and by N-oxide formation. Results reported here prove the suitability of DOCK in the lead optimization process.

More Information